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Abstract. In this paper we study the behaviour of Hamilton operators and their spectra which
depend on infinitely many coupling parameters or, more generally, parameters taking values in some
Banach space. One of the physical models which motivates this framework is a quantum particle
moving in a more or less disordered medium. One may, however, also envisage other scenarios
where operators are allowed to depend on interaction terms in a manner we are going to discuss
below. The central idea is to vary the occurring infinitely many perturbing potentials independently.
As a side aspect this then leads naturally to the analysis of a couple of interesting questions of a more
or less purely mathematical flavour which belong to the field of infinite-dimensional holomorphy
or holomorphy in Banach spaces. In this general setting we study in particular the stability of
the self-adjointness of the operators under discussion and the analyticity of eigenvalues under the
condition that the perturbing potentials belong to certain classes.

1. Introduction

The physical aim of this paper is the investigation of properties of Hamilton operators which
depend on infinitely many coupling parametets,or perturbing potentialsy;, i.e. we want
to study Hamilton operators of the form

H(B) = Ho+ ) BiV; (1)
i=1

with some unperturbed Hamiltonid, the properties of which are frequently assumed to be
known. In typical case#l, is some free Hamiltonian such as, for example, the Laplaeian
or some relatively well behaved standard Hamiltonian of the form

Ho=—-A+U )

with a fixed interaction potentidl .

In the general situatiof := (B;) varies in a certain infinite-dimensional sequence space
such as, forexampl&, with 1 < p < oo, wherd®, i.e. the sequences which do not necessarily
decay at infinity, is particularly interesting on physical grounds as we are primarily interested
in perturbations which extend with the same strength to spatial infinity.
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The physical motivation to study this class of model Hamiltonians is the following:
we envisage a quantum mechanical particle moving in an infinitely extended background
consisting, say, of a more or less disordered array of atomic potentials. Itis then an interesting
scenario, both from a physical and a mathematical point of view, to test the response of the
particle to independent variations of the coupling strengths or potentials making up the array.
A typical case in point is a particle moving in a regular crystal which is then deformed or
develops more or less irregularly distributed defects. Furthermore, possible applications to
disordered media in general are obvious.

Among the various aspects one can or should investigate are several of a more mathematical
orfundamental flavour such as, for examplgf-adjointness questionsanalyticity properties
of eigenvalues or the spectrum in generihese are the problems we will mainly address in
the following in order to set the stage as we are presently not aware whether such questions
have been dealt with in this generality in the past. Let us note in this context that up to now
the main thrust of investigations has rather gone into the studgnefom Hamiltoniansan
approach which is in some sense complementary to the one we will develop in this paper.

In addressing problems of this general kind one soon realizes that intricate mathematical
questions do emerge which do not belong to the standard arsenal of mathematical physics
such as, for exampléanfinite-dimensional holomorphgr holomorphy on Banach spaces
Furthermore, one has to deal with Taylor series having a countable infinity of independent
variables. In other words, this is yet another example how a natural physical problem quickly
leads into some very advanced fields of pure mathematics.

This suggests the following organization of the paper. As a warm-up exercise we will
treat in the next section the special case of bounded perturbations within the context of general
operator theory and develop a couple of useful mathematical tools and concepts. This abstract
approach, that is, making only very general assumptions on the class of potentials under
discussion, leads, perhaps surprisingly, to certain technical problems if one attempts to apply
itin a next step to unbounded operators. These problems are briefly discussed at the beginning
of section 3.

In section 3 we then show that a seemingly appropriate concrete class of potentials is
the so-calledStummel clas one is willing to adopt a more concrete setting, i.e. working
within a concrete Hilbert space of functions and studying concrete Hamilton operators. We
then return to more abstract considerations and give a brief revienfinite-dimensional
holomorphyor complex analysis in Banach spaceBhis allows one to treat Hamiltonians,
which depend on infinitely many independent coupling constants (or more generally, coupling
parameters belonging to some Banach space), and in particulapéniirbation theoryin a
more systematic way in section 5.

2. Concepts and tools

The first main step consists in providing criteria so that the Hamiltoslas Hy + > 8;V;

is again self-adjoint given the self-adjointnessHy. To begin with, this problem shall be
studied with the help of a simple class of perturbations for which the well known additional
technical intricacies of the more general situation are expected to be absent.

Assumption 2.1.Let Hy be a self-adjoint operator on the Hilbert spagé TheV;,i € N,
are assumed to be uniformly bounded, i.e.

Vil v < o0 ®3)

for all i and some € R.
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The problem is to guarantee that the infinite sum over the potentials is again a well defined
operator and, in this example, a bounded operator. In general it may easily happen that such
an infinite sum is no longer defined on certain vectors in the Hilbert space (e.g. if the potentials
tend to cluster too much around certain points in coordinate space). In order to prevent this one
has to take some precautions. A sufficient condition which furthermore has a clear geometric
or physical meaning is the following:

Definition 2.2 (Finite intersection property). Let theV;’s be linear operators ori{. We say
they have the finite intersection property if the following holds:

There exists a projection-valued probability measBren B(R™), the Borelo-algebra over
R™, so that:

(a) For eachV; exists a Borel se®; with P, V; = V;.
(b) Foreachi e Nlet/]; betheindexsdi # j € N: Q; NQ; # @}, Ther#(I;) is uniformly
bounded in by someig < oo.

Remark. Note that in the general case tjecan be almost arbitrary localized operators acting
in some abstract Hilbert space. In the same sense the correlation of the projectors with certain
sets in some spad®” can, while of course being physically motivated, be fairly indirect from
a mathematical point of view.

The above entails that to each givErthere exist at most, projectorsP; (shorthand for
Pq,) so thatP;V; # 0 sinceP; P, = 0 if Q; N Q; = #. By the same argument there exist at
mostng potentialsV; so thatP;V; # 0.

Example 2.3 (Multiplication operators). If V; are multiplication operators o.?(R™) they
have the finite intersection property if

(a) the support o¥; is contained in a Borel se®; and
(b) if for these sets condition 2 of definition 2.2 holds with #is being indicator functions.

Remark. The above condition entails that the potentials are sufficiently scattered in coordinate
space. This can also be enforced by slightly different conditions such as the following. Assume
that, given an arbitrary € R™ and a ball around with some fixed diameter, only uniformly
finitely many potentials meet this ball whanvaries overR™. We will come back to this
variant in section 3.

We now proceed as follows. With the help of the polar decompositidn ofe have
IVivrll = 1T | Vil | = Vil I (4)
with | V;| := (V*V;)¥/2. Applying the corresponding project®y to a self-adjoint; we obtain
PV, =V, =V =ViP, (5)
hence
Vil 2 < v* - 1Pyl 6)
and

Vil <v- P (7)
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since for positive operatord? < B? implies A < B (meaning(y|Ay) < (¥|Bv)). For
finitely manyV; it then follows that

DIV <v) P ®)
1 1

Given the sequence of potentidfsor projectorsP; we now make a disjoint refinement
{Q/i} of the class of set$2;}. This then yields a corresponding refinement of the class
of projectors which are now orthogonal by construction (projection-valued measure, hence
Q; NQ; = Pimplies P/ - P; = 0). The construction is accomplished in the following way.
First of all we can restrict ourselves to an arbitrary but fixed candidate of the{€lasahich
we for convenience cafly. We then make the following definition.

Observation/Definition 2.4. For each givernx € Qg there exists a unique maximal index set
I, C {0,1,...,k}, whereQ, ..., @ are the sets intersecting the start $& andx € Q;

for j € I,. We call the subset of elements<af having the same maximal index detQ;.

This construction yields a (disjoint) partition into a finite number of Borel sets of the start set
Qo. In the same way we can proceed with the other sets of the {la$sthus arriving at the
disjoint partition {2’ }.

Remark. Note that the sets of the refinement basically consist of certain intersections and
corresponding complements within the class of the initial sets.

Lemma 2.5. The set<2; represent a disjoint partition of the original class with a given
being resolved into at mo&' disjoint sets whera was the upper bound on the number
of setsQ2; intersecting a giver2;. By the same token we obtain a resolution into mutually
orthogonal projectors with

P, = Z P! ki < 2. (9)
1

Proof. By assumption at mosg sets can intersect our arbitrarily choses Furthermore, one

of the disjoint sets can result from the maximal index8gtcorresponding to the complement

in Qg of the union of all the intersections &f; with Qy. The optimal scenario can then be
estimated by counting the number of subsets ¢i@-set (i.e. having:g elements), which

is 2'0. To this we have to add 1 for the above complement and subtract 1 for the empty set
counted in 20. This proves the above estimate. |

For a finite sum ofP;’s we then have
k

Xn:Pigno-ZP; (10)
1

J

with k being a number betweenand 2° - n. Note that eachP]f can occur at mosty times on

the right-hand side. By constructioﬁﬁ P;. is again a projector (in contrast to the left-hand
side), and hence has norm one and we obtain (cf equation (8)):

’leVi|<v'iPi<v'nool (11)
1 1
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’ZIVil > P
1 1

With | V;| positive the sum on the left-hand side is monotonically increasing with a global norm
bound given by the right-hand side. As for self-adjdifit (v |V;¥)| < (¥||Vi|¥) holds, we

obtain
(v

(mew) <yl
1

Thus the sequenckg); V; converges weakly to a bounded operaitoe= > 7° V; because the
left-hand side is a Cauchy sequence.

implying

<v < v-ng. (12)

S0 < (o

> mw) (13)
1

and

ZI%WH <veng- Yl (14)
1

Conclusion 2.6. (a) Under the assumptions made abdgvg® V; can be defined as a weak
limit and is again a self-adjoint bounded operator

(b) Thisimplies by standard reasoning (see, forexample, [ReSil] or [Ka]hat Ho+)_ V;
is again a self-adjoint operator on the domaintf where here and in the following, unless
otherwise noted, unspecified summation always means summatiof tioar.

Corollary 2.7. This applies, in particular, to a potential
V=Y BV Bi €R B = (B) € I°(R) V; as above (15)

Remark 2.8. (a) If the V; are real multiplication operators on sonie?(R™) the above sum
can be shown to converge even in the strong sense. The underlying abstract reason for
this stronger property lies in the fact that now all thedo automatically commute which
allows for certain technical manipulations of sums which do not seem to be possible in
the more general case (the proof can be found in [Sc]).

(b) Furthermore, in this concrete case there exists a more straightforward variant on the
above proof. The operator bound &fis theess supv; (x)|. By assumption at mos v;
meet at a poink. The operator norm of_ V; is hence bounded hy- no.

Warning. In the generic case the above convergence is not in operator norm. Assuming, for
example, thafl V;|| > ¢ > 0 for all i, the sequence of sun)s V; is evidently not a Cauchy
sequence in norm.

In the typical physical situation the occurring potentials are frequently not of (strictly)
finite range but decay at infinity with a certain rate. Tinée intersection propertintroduced
above emulates to some extent sucfinge-range condition It is therefore an interesting
question as to what extent an infinite range of the potentials under discussion can be admitted.
We make the following assumption.

Assumption 2.9 (Infinite range). We assume that each potentialcan be decomposed as

Vi =Vi+ VP (16)
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with V¢ fulfilling the finite intersection property. We assume further that with the help of the
methods developed in this paper

H = Ho + Z Via (17)

can be given a rigorous meaning as a self-adjoint operator. We want to impose a condition on
v} so that

<0 (18)

[

i.e. so that
H=Ho+) V&+> VP (19)

is a well defined self-adjoint operator whe}e V? is a bounded perturbation ofi’. On
the other hand,V? need not fulfil the finite intersection property. We assume thare
multiplication operators inL2(R™) with V?” centred around point®; and decaying in the
following way:

|V?(x)| < constant(1 +|R; — x|)* (20)
for somek > 0 and with ther; distributed inR™ according to

|[Ri —R;j| >2A >0 (21)
if i £ j.
Our strategy is to show that under these conditions

DIV <) constant(1 +|R; — x)* < B < oo (22)
for all k > ko. To this end we prove the following simple lemma.

Lemma 2.10.With x € R™ and Kz (x) a ball of radiusR centred atx there are at most
(R+A)"/A™ pointsR; in Kr(x) if |[R; — R;| > 2A. Correspondingly, one can estimate the
number of points in a spherical shellz r+s) aroundx of radii R, R +d with R > A. We
have

#R) <[(R+d+A)" — (R—A)"]/A™. (23)
Proof. Let {R;} be the set of points lying itk g (x). Draw a sphere of radiug around each
R;. The corresponding balls do not intersect and we can hence estimate

#R) ¢ A" <cp - (R+HA” (24)
wherec,, is the volume of the unit sphere R”. From this we can conclude

#R) < (R+A"/A™, (25)
In the same way we prove the second statement. O

We can now proceed as follows:

DIVImI= Y IvPml+Y S Y vl (26)

Ri€K; nz2l Ri €Ky n+1)
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wheren, I € N with [ arbitrary but fixed so thdt> A. The right-hand side can be estimated
so that

DIV < Co+ ) (constant(L+n)") [(n + 1 +A)" — (n — A)"]/A™

nz=l

<Cp+Cry n P (27)

whereCy, C; andC; are constants independent of the paifihote that the leading”-powers
vanish. Furthermore, we have absorbed sums over terms with a smaller power-thhs &
in the constants). This sequence is convergenk ferm, hence:

Observation 2.11.For potentials fulfilling the criteria of assumption 2.9 the sum over infinite
range potentialsy_ V?, yields a bounded operator if

|VP(x)| < constant(1 +|R; — x| k>m (28)
wherem is the space dimension.

3. The Stummel class

It is tempting to try to proceed in the same abstract way as developed in section 2 by simply
admitting more general classes of potentials or operator®ur original idea was to employ

the famous criterion oKato smallnessn its abstract form in order to arrive at self-adjoint
perturbations of a given self-adjoint start Hamiltonian (see, for example, [Ka, ReSi2]).
Definition 3.1. Let Hy, V be operators ort{. V is called Hy-bounded with relative bound

if

(@ D(V) D D(Ho)

(b) VYl < a'lHoy |l + Iy

with a’, b non-negative and understood as the infimum of such

Remark. A corresponding condition can be formulated in theak(i.e. form) sense.

Theorem 3.2. With Hy, V as aboveH = Hy+V is a closed or self-adjoint operator dd( Hp)
if Hy is closed or self-adjoint andt is symmetric in the latter case provided thak 1.

It would now be natural to assume theto beKato-smallin the above sense and then try
to show the same fo¥_;-, V;. However, to our surprise, irrespective of the direction of attack
an approach along these abstract lines has not yet been successful due to technical intricacies
in the manipulation and interchange of (infinite) sums and norm estimates. As a consequence
we choose, for the time being, a more concrete approach in this section and consider a certain
(in fact large) class of admissible potentials on saMER™).

Definition 3.3 (Stummel class).With v a measurable function o™ with respect to the
standard Lebesgue measure we define for gaehR

12
(/ |uwﬂx—ﬂpMWO p<m
lx—y|<1

1/2
(/ |uwﬁww> 0> m.
lx—y|<1

The corresponding Stummel class is given by
M,®R") :={v:R" - C : supM, ,(x) := M, , < oo}. (30)

xeRm

Mv,p(x) = (29)
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This class was introduced by Stummel in [St]. A textbook treatment can be found in, for
example, [We]. Its properties have also been exploited in various papers by Simon (see, for
example, [Si]).

Lemma 3.4 (without proof). M,(R™) is a vector space antif,, C M, for p1 < pa.
Example 3.5.

L(R™) + L®(R™) C M,(R™) L .(R™) C M,(R™) (31)
for p > m.

As to the reason for the choice of this particular class we would like to make some
comments. Typically, mathematical physicists are accustomed to atomic potentials which
consist of asingular part having a few singularities of a certain degree away from infinity
and perhaps a certain decaying tail extending to infinity. The left-hand side of example 3.5
is a typical case in point. These are the classes for which a lot of estimates can be found in
the literature (see, for example, [ReSi2]) and which lead to a whole bunch of self-adjointness
criteria. The potentials we want to discuss, however, are of a more intricate type. In our
scenario the singularities extend generically to infinity as the particle is assumed to move in an
infinitely extended (disordered) medium. As far as we can see, most of the standard estimates
do apply only to the above-mentioned simpler class of atomic potentials (at least without
modifications). On the other hand, as can be seen from definition 3.1, the Stummel condition
is essentially a local estimate, that is, it is relatively insensitive to the number of singularities
and their position in space. Therefore, it seems to be more suitable for our purposes at the
moment.

We remarked already in section 2 that there exist variants dimitesintersection property
given in definition 2.2 which may turn out to be more suitable in specific contexts. This is the
case for the Stummel class.

Definition 3.6 (Variant on the finite intersection property). Given x € R”™ and a ball
aroundx with radius one, there are only uniformly finitely many potentlgl$with respect to

eachx) which meet this ball. The bound being denoted hy

Remark. For well behaved set®; or supports ofV; all these conditions are essentially
equivalent. On the other hand, there may be extreme situations where the one or the other
turns out to be better adapted.

Theorem 3.7.With v; (x) in M,(R™) for all i so thatM,, , < oo uniformly ini and {v;}
fulfilling the intersection property in the sense of definition 3.6

> Bivi € M,(R") (32)
1
holds forg € 17(C), 1 < p < oo.

Proof. By assumption there exists a uniformly finite index skt,for eachx so that
supp(z ﬂivi) Ny eR" lx -yl <1
i=1

= SUPF(Z ﬂi%’) N{yeR" 1 |x —y| <1} (33)

i€y
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Forp < m we have

/xy|<l

o0

Bivi(y)
1

B /x—y|<l
Z:Bivi (Mlx = y|P=™72

/X—y|<1 iel,

) 1/2\ 2
< (Z(/ l<l|ﬁivi(y)|x—yl"’"”)/2| d'"y) ) (34)

iel,

2
lx —ylP 7" d"y

i=

2
lx —yl”~"d"y

Z,Bivi()’)

i€,

2
dr y

where in the last inequality the Minkowski or triangle inequality f8rhas been exploited. In
a second step we obtain

<Z(/ |:3ivi(y)|x—y|(pm)/2|2dmy)l/2)2
lx—yI<1

i€,

2 2 2
< (suplBi)? nf (maxM,, ,)
iely iel,

2
< 18I ni(maxi, )
< 00 (35)

uniformly inx as sup.; |B:| < IBllc < lIBll,- Analogously, one shows far > m:

00 2 2
/ Biui(y)| d"y = / > Bivi(y)| dy
—yl<1 1521 —yI<1lieT,
2
< IBIG n3 (maxmy, ,)
e (36)
uniformly in x, which proves the statement. |

Inthe following we choosély = —A. The Laplace operator is self-adjoint on the Sobolev
spaceW,(R™) (see, e.g., [ReSi2]). Furthermore, it can be inferred from slightly more general
results provided in [We] that potentials from the Stummel class with 4 are defined on
W»(R™) and areelatively boundedvith respect to—- A with relative boundzero.

Theorem 3.8.Let|| - ||, || - || be the £?) Hilbert space and Sobolev norm, respectively. For
p < 4there exists a constant > 0 so that

vyl < My ,ll¥ |2 Vve M,R") ¢ e Wo(R™). @7
Furthermore, for ally > 0 there exists &, so that
vl < nlldrllz + Cyllyll vy € Wa(R™). (38)

As the above Sobolev norm is equivalent to the graph norm of the Laplacian it follow that
is —A-bounded with relative bound zero.
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Consequences 3.9Under the above assumptiods(8) = —A + Y .2, B;V; is a closed,
respectively, self-adjoint operator di,(R™).

A slight extension then yields

Theorem 3.10.Under the above assumptiofs(8) = —A +U + Y -, B;V; is a closed or
self-adjoint operator oriW,(R™) if U is —A-bounded with relative bound zero. In the latter
caselU andV; have to be symmetric arg] have to be real.

So far the results on closedness or self-adjointness of Hamilton operators and the
corresponding classes of admissible potentials. In the next two sections we are going to
establish a theory ainalytic perturbation of spectra and operatdeking place innfinitely
many variablest a time or variables varying in a general Banach space upon this groundwork.

4. Complex analysis in Banach spaces

In the second part of this paper we want to discuss analyticity properties of eigenvalues of
Hamilton operators (8) = Ho + Y o, B: Vi with Hy some unperturbed Hamiltonian and
B1, B2, ... € C. To do so one needs the notion of infinite-dimensional holomorphy.

Instead of dealing with infinitely many coupling parameters we will frequently regard
B = (B1, B2,...) as an element of a Banach space, such as, for exaiipland hence
investigate perturbations in one Banach space-valued coupling parameter. While complex
analysis in one complex variable belongs to the standard repertoire of the ordinary perturbation
theory of operators we have to generalize it in the way described above to complex analysis in
Banach spaces.

As this is perhaps not so widely known we summarize definitions and theorems which
will be important in this enterprise. Many of the results can already be found in [HiPh]. As to
more recent representations see, for example, [Mu] or [Ze].

In what follows X andY are infinite-dimensional complex Banach spaces&@nd X is
an open set. One of the difficulties of complex analysis in Banach spaces is a suitable definition
of power series and differentiability.

Definition 4.1. A formal power series fromX to Y ata € X is a series of symmetrig;-linear
mappings,, : X" — Y of the form

D An@—a)” (39)
m=0
withA,(x —a)" == A, (x —a,...,x —a).
[ S ——
m-times

The radius of convergence of the power sel€g._; A, (x — a)™ is the supremum of
all » > 0 so that the series converges uniformly in the closed®éll r). In analogy to the
formula of Cauchy—Hadamard the radius of convergeR@zgiven by

1
= = limsup||A,,|I*" (40)
R m—00
With [[Ay |l 3= SUR ;= jx, =1 | Am (X1, - - ., x) [l @nd J/0 = oo as well as foo := 0. The
series converges absolutely and uniformhBitu, r) if 0 < r < R.
With this notion of power series it is possible to introduce analytic mappings in Banach
spaces.
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Definition 4.2. Amap f : U — Y is called analytic if for eactu € U there exists a ball
B(a, r) C U and a sequence of symmetiic;linear, continuous mappings,, : X™ — Y so
that

f) =) Aux—a)" (41)
m=0

forall x € B(a,r).

The sequence of mappings, is uniquely determined by anda. We will frequently
suppress the explicit dependenceoor a and set

Amf(a) = Am~ (42)
f) =) A"f@)(x —a)" (43)
m=0

is calledTaylor serieof f ata.

Many important theorems in complex analysis in Banach spaces can be shown to hold by
reducing the problems to well known results of complex analysis in one or several complex
variables.

Definition 4.3. Amapf : U — Y is called G-analytic if the mapping — f(a + Ab) is
analytic for alla € U andb € X on the openseth € C : a + Ab € U}. ltis called weakly
analytic if g o f is analytic for allg € Y’, the dual space of .

The following generalized Cauchy integral formula is useful.

Theorem4.4.Letf : U — Y be analytica € U,t € X andr > O0sothata + ¢t € U for all
£ €U, r) c C. Thenforallr € U(0, r) C C the Cauchy integral formula

_ 1 [ fa+*e
flatin =— st dz (44)
holds. Further,
d _ 1 fla+¢r)
af(a +Ar) = 2t e G =02 d¢ (45)

is valid.

The integration paths are always positively oriented. An analogous formula exists for
higher derivatives.

With the help of the generalized Cauchy integral formula the following relations between
the different notions of differentiability can be shown:

Theorem 4.5.

fisanalytic < fis continuous and;-analytic
< fislocally bounded and;-analytic

< f is weakly analytic.

After discussing the notion of analytic or holomorphic functions in the sense of power
series, i.e. the point of view adopted by Weierstrass, we now turn to the notion of complex
differentiability, i.e. the Riemannian point of view.
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Definition 4.6. Amapf : U — Y is called differentiable (Fechet-differentiable, complex
differentiable or differentiable in norm) if for alt € U there exists a mapping € £(X,Y)
so that

im 1@t = fla) = Am| _

0. 46
h—0 121l (40)

Alternatively, a mapf : U — Y is called differentiable if for alu € U a mapping
A € L(X,Y) exists so that

fla+h)— f(a) = Ah) +o(|h]) (47)

for all 4 in a neighbourhood of zero. Hergéh) = o(||k]) is an abbreviation for a mapping
r:U0) € X — Y withr(h)/||h]| = 0if h — O.
As a side remark we want to mention some further results.

(a) Every differentiable map : U — Y is continuous.

(b) The mapping — g~ is differentiable for every invertible map € £(Y). We will use
this in connection with resolvents in section 5.

(c) The mappingd € £(X,Y) of definition 4.6 is uniquely determined by anda. It is
calledderivativeof f in a and is often written in the form

Df(a) = A. (48)

Every differentiable magf : U — Y induces a mappin@f : U — L(X,Y). Asin
finite-dimensional Banach spaces the sum rule, product rule and chain rule are valid. In the
proofs of section 5, where we generalize perturbation theory to coupling parameters in Banach
spaces, we often use the equivalence between analyticity and complex differentiability.

Analogous to complex analysis in one complex variable it is shown that analyticity also
implies that the map is infinitely often complex differentiable. Here higher derivatives are
definedrecursively, i.ef : U — Y isk-times differentiablé f is a(k—1)-times differentiable
mapping and if thek — 1)st derivativeD*~1f : U — £(X*71, 1Y) is differentiable. A map
is calledinfinitely often differentiabléf it is k-times differentiable for eackh € N (we set
D°f = f).

One can show that every-linear mappingD™ f(a) € L£(X™,Y) is symmetric for all
a € U. With this it is possible to prove the following important theorem.

Theorem 4.7.Foramapf : U — Y the following statements are equivalent:

(a) f is analytic.
(b) 1 is complex differentiable.
(c) f isinfinitely many times complex differentiable.

If one of these conditions is fulfilled,
D" f(a) =m! A" f(a) (49)
holds.

With this we obtain the Taylor series ¢fin a

o0

1
f =) = D" f@)x—a) (50)

m=0

forall x € B(a, r) C U with a certairnr > 0.
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In section 5 we will use the notion of a differentiable map, which depends on a variable
in a Cartesian product of Banach spaces. We want to show that the resolvent of the Hamilton
operatorH (B),

(HB) — 1) (51)

is jointly differentiable in(8, ) with A being an element of the resolvent set.

The Cartesian produdt x Y of two Banach spaces andY becomes a Banach space by
componentwise addition and scalar multiplication and with the nppmy)| = [|x|| + ||yl
for (x,y) € X x Y. LetU C X x Y be open and another complex Banach space. Then
f U — Zis called differentiable in analogy to definition 4.6 if for &, b) € U there exists
amappingA € £(X x Y, Z) so that

Ifa+h,b+k)— fa,b)— A(h,b)| _
(10— (0.0 Il Kl -

0 (52)

or equivalently
fla+h,b+k) = f(a,b)+ Ah, k) +o(|(h, k)] (53)

holds. The mappind is called derivative of in (a, b) € U and is written a®df (a, b) := A.
To prove the differentiability of a mapping in, for example, two variables, one can introduce
partial derivatives as in finite-dimensional spaces.

Theorem4.8.Amapf : U Cc X x Y — Z is differentiable if f1(x) = f(x,y)
and f>(y) = f(x,y) are differentiable and if the derivativeB, f (a, b) := Dfi(a) and
D, f(a, b) := Df>(b) are continuous ina, b). Then for eacla, b) € U

Df(a,b)(h,k) = D1f(a,b)h + D2 f (a, bk (54)

holds forall(h, k) € X x Y.

5. Analytic perturbation theory in coupling parameters in Banach spaces

As the model Hamiltonian of section 1 suggests, we have to focus our attention on the
perturbation theory of operatorsin infinite many complex coupling parameters. Inthe following
we consider thes;’s as an element of a sequence spac€), 1 < p < oo. Of particular
interest is the spadé’, i.e. the sequences which are uniformly bounded.

As we have already remarked in section 4, we treat the sequence-space-valued coupling
parameters in a more abstract way by regarding them as coupling parameters in a general
complex Banach space.

In the first subsection we define analytic families and prove a generalization of a theorem
of Kato and Rellich about the behaviour of isolated, non-degenerate eigenvalues and their
eigenfunctions.

The second subsection deals with other notions of analytic families. We investigate in
particular analytic families of type (A) and explore their relation to analytic families of the
first subsection.

In the third subsection we show that relatively bounded perturbations are analytic families
in our generalized sense. This then enables us to apply the machinery developed above to the
model Hamiltonian of section 1.
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5.1. Generalization of a theorem of Kato and Rellich

One of the goals of analytic perturbation theory is the representation of eigenvalues and
eigenfunctions as power series in the complex coupling parameter. Therefore, the functions
under discussion have to be analytic in the coupling parameter. One hopes that the eigenvalues
and eigenfunctions are analytic if the corresponding Hamilton operator depends analytically
on the coupling parameter in a certain way.

As we have explained in section 4 it is natural to investigate analytic mappings between a
Banach space of coupling constants and a Banach space of operators, for example the bounded
operators.

For unbounded (Hamilton) operators the situation is slightly different as the set of
unbounded operators is not automatically a Banach space. Itis, however, possible to metrize the
set of closed operators and to define analytic families via a generalized convergence [Ka, p 197].
In this paper we use an equivalent definition according to [ReSi4, p 14]. In this approach
analyticity of the corresponding resolvents is demanded, such that the problem is reduced to
the case of bounded operators.

In the following ‘B nearBy’ always means that is an element of a suitable neighbourhood
of Bo. If not stated otherwise, the operat@r&8) are defined on a Banach spateX is always
assumed to be a complex Banach spaceland X to be open and connected.

Definition 5.1. An operator-valued mappin@ () on U is called an analytic family or an
analytic family in the sense of Kato if and only if

(a) For eachp € U, the operatorT (8) is closed and has a non-empty resolvent set, i.e.
p(T(B)) #10.

(b) For everyBy € U a iy € p(T(Bo)) exists so thaty € po(T(B)) if B is near By and
so that the resolventT (8) — Ao) ! is an analytic operator-valued mapping gfin a
neighbourhood of.

The following investigations show that this definition is convenient and allows us to
derive results about the behaviour of eigenvalues and eigenfunctions, such as, for example, the
generalized theorem of Kato and Rellich.

For this we need the analyticity of the resolvent in both variates.).

Lemma 5.2.If T(-) is an analytic family orU,

F={(B.2):peU, repT(PB)} (55)
is open inX x C. The resolventT (8) — 1)~%, which is defined offr, is analytic in(8, ).

The proof, which is inspired by [ReSi4, p 14], can be found in [Sc]. It exploits the
equivalence between analyticity and complex differentiability. The resolvent is analytic in
(B, 1) e T ifitis differentiable in each variable and if the partial derivatives are continuous in
(B, 1) (theorem 4.8). In particular, we use the differentiability of the mapging g~ .

With the help of this it is possible to generalize the theorem of Kato and Rellich of
perturbation theory in one complex parameter [ReSi4,p 15] to coupling parameters in a
complex Banach space.

Theorem 5.3.Let T'(-) be an analytic family in8 € U. Suppose thaEy is an isolated,
non-degenerate eigenvalue®ffo), then the following is valid:

(a) For B near By, there is exactly one isolated, non-degenerate pbiift) in o (T (8)) near
Ey. E(B) is an analytic map oB for g near Bo.
(b) There is an analytic eigenvectgr(8) of T'(8) for 8 near Bo.
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Proof. If Egis a discrete eigenvalue &f(8p), one can find > 0 so thatfA € C : |» — Ep| <
r}No(T(Bo)) = {Eo}. The circle{r € C : |» — Eg| = r} is compact inC and a subset of
p(T (Bo)). According to lemma 5.2 the sEt= {(B,1) : B € U C X, L € p(T(B))} is open
in X x C. Therefore§ > 0 exists so that € p(T(B)) if | — Eo| = r and || — Boll < 6.
Then the resolventT (8) — A)~1 is analytic in(B, 1). LetW := {B € X : |8 — Boll < 8}
Then

P(B) = —(2ri)" / (T(B)— )" dr (56)
|A—Ep|=r
exists for allg € W and is analyticig if 8 ¢ W C X.

Since the eigenvalugg of T'(8y) is non-degenerate, the corresponding projector is one
dimensional. Using a lemma in [ReSi4,p 14] we know that all projecfo(8) are one
dimensional if8 € W. According to theorem XII.6 in [ReSi4, p 13], which is also valid for
operators in Banach spaces, there is exactly one non-degenerate eigényalogT (8) with
|[E(B) — Eol <rif BeW.

Let o be the corresponding eigenvectoriy. ThenP (8)yo # 0 if B is neary because
P(B)vo — Yo for B — Bo. As P(B)yg is an eigenvector of the operatB(g) in Y, we have
forall ¢ € Y’, the dual space df,

o(P(B)Yo) = o((T(B) — Eo— ) (T(B) — Eo — r) P(B)¥o)
= (E(B) — Eo— r)o((T(B) — Eo — ) "P(B)¥o). (57)
Hence

o((T(B) — Eo—r) *P(B)¥0)
(P (B)vo)

(E(B)—Eo—r)' = (58)
and(E(B) — Eq — r)"tis analyticifg € W.
Definey (B8) := P(B)vo, theny (B) is an analytic eigenvector gf(8) if 8 € W. O

5.2. Analytic families of type (A)

As the last theorem shows the notion of analytic families in the sense of Kato is also convenient
for coupling parameters in general Banach spaces. As itis frequently difficult to verify directly
that a given family of operators is amalytic family, other notions of analytic families are
introduced.

Inthis paper we define analytic families of type (A) for operators depending on a parameter
varying in a Banach space. It is then possible to show that analytic families of this type are
analytic families in the more general sense of Kato. This is useful because it is usually easier
to prove that a family of operators is analytic of type (A).

Definition 5.4. For eachp € U, letT(B8) : D(T(B)) C Y — Y be a closed operator with
non-empty resolvent sef.(-) is called an analytic family of type (A) if and only if

(a) The domairD := D(T (B)) does not depend ghr e U.
(b) T(B)y is an analytic map ir8 € U for all ¥ € D.

In order to infer the more general property from this we prove the analyticity of the
resolvent with the help of the ‘strong’ analyticity of the operators. In a first step we construct
bounded operators from the closed operators and use the following lemma.
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Lemma5.5.Let X, Y and Z be complex Banach spaces and &t C X be open. If
T(B) € L(Z,Y)andifT(B)y is analyticing € U for all v € Z, thenT (8) is analytic in
BelU.

Proof. Letg e U,t € XandM ={¢ € C: B+ ¢t € U}. Letl' € M be a mathematically
positive oriented circle ig. The Cauchy integral formula (theorem 4.4) yields

1 - N d .
E(T(ﬁ +E+rDYy —T(B+LDY) — &T(ﬂ +in)Y

_1 (}( 1 >_ 1 )T(ﬂu’t)wdg/

o Je\n\¢c' =@ +h) ¢ —¢ TSy
1 h )

= — T ’ d,. 59
2mi F(é‘/_(f‘*h))(;/—;)Z B+ de ( )

As all analytic functions ar&-analytic,T (8) v is G-analytic (theorem 4.5). Hend& 8+¢'1)
is continuous irt’ € M. Sincel is compact, for eacl € Z a numberC,, exists so that

ITB+¢Dvl < Cy (60)
forall ¢’ € T'. According to the uniform boundedness theore6 a R exists so that

sup|| 7B +¢'nll < C. (61)

g'el’

Therefore, one obtains

1 .- - d .
HZ(T(ﬁ MOy =T B +IDY) — @T(ﬂ+§[)wH

1 h
< —C de’ 62
on ””””/r -+ —c2|® (62)
hence the estimate
1. ) d.
”E(T(ﬂ+(§+h)t)—T(ﬁ+4“t))—d—T(ﬁ+§t)
R
1 h
< —C de’ 63
21 /r ©— @+ —or2|® 63)

holds. The integral vanishes in the liniit— 0. ThereforeT () is G-analytic ing € U.

T(B) is analytic if, in additionT () is locally bounded (theorem 4.5). The local boundedness
follows from the uniform boundedness principle by means of the continuity of the mapping
T(B)y. For each) € Z and every compact s€tC U acy exists so thall 7 (8) v || < cy IS

valid for all 8 € I". Hencec € R exists with sup ITB) < c. a

This yields the following important theorem (cf [Ka, p 375]).
Theorem 5.6. Every analytic family of type (A) is an analytic family in the sense of Kato.

Proof. LetBp € U C X. LetT(8) : D C Y — Y be an analytic family of type (A) i8 € U.
HenceT (Bo) is a closed operator with(T (8p)) # @. By introduction of the graph norm

Il = 1l +IT (Bo) v | (64)



Perturbation theory of Sckidinger operators 7539

the domairD of this operator is converted into a Banach space

D:= @, (65)
Let: be the embedding operator fromin Y. ¢ is bounded becausey || = [|v| < vl
holds.
We now consider the operatdr(8) from D to Y and call this operatdf (8),
TB):D —Y, (66)
Vi TV =TB) . (67)

T(pB) is a closed operator becau%&p) is closed and is continuous. T(B) is defined
on the wholeD. Therefore,T(8) is bounded according to the closed graph theorem, i.e.
T(B) € L(D,Y).

T(B)Y = T(B)ty = T(B)y is analytic ing € U for all € D. Therefore,T(B) is
analytic ing € U (lemma 5.5).

Let o € p(T(Bo)). It has to be shown thaty is an element ofo(T'(8)) and that
(T(B) — ro)~t is an analytic map in8 for g nearBy. The mapT (Bo) —ro : D — Y
is bijective becausé, € p(T(Bp)). The same holds for : D — D. Therefore,
(T(Bo) — 2o)t = T(Bo) — Aot is invertible and

(T(Bo) — hot) ‘e LY, D). (68)
As the set of invertible, continuous and linear operatorg amopen (see, e.g., [Ta, p 9]),
(T(B) — rot) " € LY. D) (69)

and(T(B8) — o)L is analytic ing for 8 nearpB,. Therefore,

(T(B)—1r0) = u(T(B) —hro0)™" (70)
is bounded and analytic i (note that we modified the standard textbook proof which does
not seem to be directly applicable to our more general situation). O

The inversion of this theorem is not valid as already has been shown by a counterexample for
complex coupling parameters [Ka, p 376] or [ReSi4, p 20]. An analytic family in the sense of
Kato can have a domain which dependsfon

5.3. Perturbation theory of Hamilton operators in infinitely many complex coupling
parameters

In quantum mechanics the (Hamilton) operators are typically of the form
H(B) = Ho+V(p). (71)

Theorem 5.7.Let X andY be complex Banach spaces; létc X be open and connected.
Suppose thaHj is a closed operator orD(Hy) C Y and that for each8 € U, V(B) is
relatively Hy-bounded withHy-bound smaller than one. Furthermore, tg8)y be analytic
in 8 € U forall ¢ € D(Hp) and let the resolvent set(H (8)) of

H(B) = Ho+V(p) BeU (72)

be non-empty. TheH (-) is an analytic family.
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Proof. It is sufficient to prove thatd (-) is an analytic family of type (A) (theorem 5.6).
According to a well known stability theorem [Ka, p 19G¥,(8) is a closed operator for all
B € U. ThedomairD(H (8)) = D(Hp) does not depend g Becausé/ (8)v is an analytic
map, H () is also analytic in8 € U for all v € D(Hp). Therefore, all conditions of an
analytic family of type (A) are fulfilled. a

Remark 5.8. Let Hy be a self-adjoint operator o (Hp) C ‘H and letV be relatively Hy-
bounded withHy-bound zero. Then the resolvent gétiy + V) is not empty.

Proof. By definition we have
IVl <alyll + ol Hoyll V¢ € D(Ho). (73)

As the Hy-bound ofV is zero,b can be chosen arbitrarily small. The spectrum of the self-
adjoint operatorHy is real. Thereforepr € p(Hp) with a sufficiently large imaginary part
exists so that

a sup |[E—A"Y+b sup |E|IE—-A"1<1 (74)
Eco(Hop) Ee€o(Ho)
holds. According to [Ka, pp 214, 272]is an element op (Hy + V). O

In the first part of the paper we investigated Hamilton operators of the form
H(B)=Ho+ Y BiVi. (75)
i=1

V(B = Y oy BiViy is analytic ing = (B1, Bz, ...) € [°(C) for all ¥ € D(Hp) because
> o2, BiV; is continuous and linear ifi for all ¥ € D(Ho). Bounded operators are relatively
Hy-bounded withHy-bound zero. Therefore, we obtain the following corollary.

Corollary 5.9. SupposeH, to be a self-adjoint operator wit(Hy)  L?(R™). LetV; be
symmetric, bounded operators i (R”) with || V;|| < v for all i € N, which fulfil the finite
intersection property. Leg € [°°(C). Then

H(B) = Ho+) BiV; (76)
i=1

is an analytic family.

For Hamilton operators with an infinite sum of Stummel-class potentials we obtain a
corresponding result.

Corollary 5.10. Letp < 4andg € I’(C),1 < p < oo. Let{V;};en be multiplication
operators inL?(R™) so that the finite intersection property is fulfilled and so that M, (R™)
with sup .y M., < co. Then

HB)=—A+Y BV, (77)
i=1

is an analytic family. If in additiorU is a symmetrici- A-bounded operator with- A-bound
zero, the Hamilton operatord (8) = —A + U + ) 2, B; V; are an analytic family.

Proof. Since—A is a self-adjoint operator oW,(R™), —A + U is self-adjoint onW,(IR™).
In section 3 we proved that(8) := > /2, B:V; is an element of the Stummel-clags, (R™).
ThereforeV (B) is relatively bounded with respect toA + U with (—A + U)-bound zero[J
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