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Abstract. In this paper we study the behaviour of Hamilton operators and their spectra which
depend on infinitely many coupling parameters or, more generally, parameters taking values in some
Banach space. One of the physical models which motivates this framework is a quantum particle
moving in a more or less disordered medium. One may, however, also envisage other scenarios
where operators are allowed to depend on interaction terms in a manner we are going to discuss
below. The central idea is to vary the occurring infinitely many perturbing potentials independently.
As a side aspect this then leads naturally to the analysis of a couple of interesting questions of a more
or less purely mathematical flavour which belong to the field of infinite-dimensional holomorphy
or holomorphy in Banach spaces. In this general setting we study in particular the stability of
the self-adjointness of the operators under discussion and the analyticity of eigenvalues under the
condition that the perturbing potentials belong to certain classes.

1. Introduction

The physical aim of this paper is the investigation of properties of Hamilton operators which
depend on infinitely many coupling parameters,βi , or perturbing potentials,Vi , i.e. we want
to study Hamilton operators of the form

H(β) = H0 +
∞∑
i=1

βiVi (1)

with some unperturbed HamiltonianH0, the properties of which are frequently assumed to be
known. In typical casesH0 is some free Hamiltonian such as, for example, the Laplacian−1
or some relatively well behaved standard Hamiltonian of the form

H0 = −1 +U (2)

with a fixed interaction potentialU .
In the general situationβ := (βi) varies in a certain infinite-dimensional sequence space

such as, for example,lp with 16 p 6∞, wherel∞, i.e. the sequences which do not necessarily
decay at infinity, is particularly interesting on physical grounds as we are primarily interested
in perturbations which extend with the same strength to spatial infinity.
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The physical motivation to study this class of model Hamiltonians is the following:
we envisage a quantum mechanical particle moving in an infinitely extended background
consisting, say, of a more or less disordered array of atomic potentials. It is then an interesting
scenario, both from a physical and a mathematical point of view, to test the response of the
particle to independent variations of the coupling strengths or potentials making up the array.
A typical case in point is a particle moving in a regular crystal which is then deformed or
develops more or less irregularly distributed defects. Furthermore, possible applications to
disordered media in general are obvious.

Among the various aspects one can or should investigate are several of a more mathematical
or fundamental flavour such as, for example,self-adjointness questionsoranalyticity properties
of eigenvalues or the spectrum in general. These are the problems we will mainly address in
the following in order to set the stage as we are presently not aware whether such questions
have been dealt with in this generality in the past. Let us note in this context that up to now
the main thrust of investigations has rather gone into the study ofrandom Hamiltonians, an
approach which is in some sense complementary to the one we will develop in this paper.

In addressing problems of this general kind one soon realizes that intricate mathematical
questions do emerge which do not belong to the standard arsenal of mathematical physics
such as, for example,infinite-dimensional holomorphyor holomorphy on Banach spaces.
Furthermore, one has to deal with Taylor series having a countable infinity of independent
variables. In other words, this is yet another example how a natural physical problem quickly
leads into some very advanced fields of pure mathematics.

This suggests the following organization of the paper. As a warm-up exercise we will
treat in the next section the special case of bounded perturbations within the context of general
operator theory and develop a couple of useful mathematical tools and concepts. This abstract
approach, that is, making only very general assumptions on the class of potentials under
discussion, leads, perhaps surprisingly, to certain technical problems if one attempts to apply
it in a next step to unbounded operators. These problems are briefly discussed at the beginning
of section 3.

In section 3 we then show that a seemingly appropriate concrete class of potentials is
the so-calledStummel classif one is willing to adopt a more concrete setting, i.e. working
within a concrete Hilbert space of functions and studying concrete Hamilton operators. We
then return to more abstract considerations and give a brief review ofinfinite-dimensional
holomorphyor complex analysis in Banach spaces. This allows one to treat Hamiltonians,
which depend on infinitely many independent coupling constants (or more generally, coupling
parameters belonging to some Banach space), and in particular theirperturbation theoryin a
more systematic way in section 5.

2. Concepts and tools

The first main step consists in providing criteria so that the HamiltonianH = H0 +
∑
βiVi

is again self-adjoint given the self-adjointness ofH0. To begin with, this problem shall be
studied with the help of a simple class of perturbations for which the well known additional
technical intricacies of the more general situation are expected to be absent.

Assumption 2.1.LetH0 be a self-adjoint operator on the Hilbert spaceH. TheVi , i ∈ N,
are assumed to be uniformly bounded, i.e.

‖Vi‖ 6 v <∞ (3)

for all i and somev ∈ R.
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The problem is to guarantee that the infinite sum over the potentials is again a well defined
operator and, in this example, a bounded operator. In general it may easily happen that such
an infinite sum is no longer defined on certain vectors in the Hilbert space (e.g. if the potentials
tend to cluster too much around certain points in coordinate space). In order to prevent this one
has to take some precautions. A sufficient condition which furthermore has a clear geometric
or physical meaning is the following:

Definition 2.2 (Finite intersection property). Let theVi ’s be linear operators onH. We say
they have the finite intersection property if the following holds:
There exists a projection-valued probability measureP onB(Rm), the Borelσ -algebra over
Rm, so that:

(a) For eachVi exists a Borel set�i with P�iVi = Vi .
(b) For eachi ∈ N let Ii be the index set{i 6= j ∈ N : �i ∩�j 6= ∅}. Then#(Ii) is uniformly

bounded ini by somen0 <∞.

Remark. Note that in the general case theVi can be almost arbitrary localized operators acting
in some abstract Hilbert space. In the same sense the correlation of the projectors with certain
sets in some spaceRm can, while of course being physically motivated, be fairly indirect from
a mathematical point of view.

The above entails that to each givenVi there exist at mostn0 projectorsPj (shorthand for
P�j ) so thatPjVi 6= 0 sincePjPi = 0 if �j ∩ �i = ∅. By the same argument there exist at
mostn0 potentialsVi so thatPjVi 6= 0.

Example 2.3 (Multiplication operators). If Vi are multiplication operators onL2(Rm) they
have the finite intersection property if

(a) the support ofVi is contained in a Borel set�i and
(b) if for these sets condition 2 of definition 2.2 holds with thePi ’s being indicator functions.

Remark. The above condition entails that the potentials are sufficiently scattered in coordinate
space. This can also be enforced by slightly different conditions such as the following. Assume
that, given an arbitraryx ∈ Rm and a ball aroundx with some fixed diameter, only uniformly
finitely many potentials meet this ball whenx varies overRm. We will come back to this
variant in section 3.

We now proceed as follows. With the help of the polar decomposition ofVi we have

‖Viψ‖ = ‖Ui |Vi |ψ‖ = ‖|Vi |ψ‖ (4)

with |Vi | := (V ∗i Vi)1/2. Applying the corresponding projectorPi to a self-adjointVi we obtain

PiVi = Vi = V ∗i = ViPi (5)

hence

‖|Vi |ψ‖2 6 v2 · ‖Piψ‖2 (6)

and

|Vi | 6 v · Pi (7)
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since for positive operatorsA2 6 B2 impliesA 6 B (meaning(ψ |Aψ) 6 (ψ |Bψ)). For
finitely manyVi it then follows that

n∑
1

|Vi | 6 v
n∑
1

Pi. (8)

Given the sequence of potentialsVi or projectorsPi we now make a disjoint refinement
{�′j } of the class of sets{�i}. This then yields a corresponding refinement of the class
of projectors which are now orthogonal by construction (projection-valued measure, hence
�′i ∩ �′j = ∅ impliesP ′i · P ′j = 0). The construction is accomplished in the following way.
First of all we can restrict ourselves to an arbitrary but fixed candidate of the class{�i} which
we for convenience call�0. We then make the following definition.

Observation/Definition 2.4. For each givenx ∈ �0 there exists a unique maximal index set
Ix ⊂ {0, 1, . . . , k}, where�1, . . . , �k are the sets intersecting the start set�0 andx ∈ �j
for j ∈ Ix . We call the subset of elements of�0 having the same maximal index setI , �I .
This construction yields a (disjoint) partition into a finite number of Borel sets of the start set
�0. In the same way we can proceed with the other sets of the class{�i}, thus arriving at the
disjoint partition{�′j }.

Remark. Note that the sets of the refinement basically consist of certain intersections and
corresponding complements within the class of the initial sets.

Lemma 2.5. The sets�′j represent a disjoint partition of the original class with a given�i
being resolved into at most2n0 disjoint sets wheren0 was the upper bound on the number
of sets�j intersecting a given�i . By the same token we obtain a resolution into mutually
orthogonal projectors with

Pi =
ki∑
1

P ′j ki 6 2n0. (9)

Proof. By assumption at mostn0 sets can intersect our arbitrarily chosen�0. Furthermore, one
of the disjoint sets can result from the maximal index set{0}, corresponding to the complement
in �0 of the union of all the intersections of�i with �0. The optimal scenario can then be
estimated by counting the number of subsets of a(n0)-set (i.e. havingn0 elements), which
is 2n0. To this we have to add 1 for the above complement and subtract 1 for the empty set
counted in 2n0. This proves the above estimate. �

For a finite sum ofPi ’s we then have

n∑
1

Pi 6 n0 ·
k∑
j

P ′j (10)

with k being a number betweenn and 2n0 · n. Note that eachP ′j can occur at mostn0 times on

the right-hand side. By construction
∑k

1P
′
j is again a projector (in contrast to the left-hand

side), and hence has norm one and we obtain (cf equation (8)):

n∑
1

|Vi | 6 v ·
n∑
1

Pi 6 v · n0 · 1 (11)
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implying ∥∥∥∥ n∑
1

|Vi |
∥∥∥∥ 6 v∥∥∥∥ n∑

1

Pi

∥∥∥∥ 6 v · n0. (12)

With |Vi | positive the sum on the left-hand side is monotonically increasing with a global norm
bound given by the right-hand side. As for self-adjointVi |(ψ |Viψ)| 6 (ψ ||Vi |ψ) holds, we
obtain ∣∣∣∣(ψ∣∣∣∣ n∑

1

Viψ

)∣∣∣∣ 6 (ψ∣∣∣∣ n∑
1

|Vi |ψ
)

(13)

and (
ψ |

n∑
1

|Vi |ψ
)
6 ‖ψ‖ ·

∥∥∥∥ n∑
1

|Vi |ψ
∥∥∥∥ 6 v · n0 · ‖ψ‖2. (14)

Thus the sequence
∑n

1 Vi converges weakly to a bounded operatorV = ∑∞1 Vi because the
left-hand side is a Cauchy sequence.

Conclusion 2.6. (a) Under the assumptions made above
∑∞

1 Vi can be defined as a weak
limit and is again a self-adjoint bounded operator

(b) This implies by standard reasoning (see, for example, [ReSi1] or [Ka]) thatH = H0+
∑
Vi

is again a self-adjoint operator on the domain ofH0 where here and in the following, unless
otherwise noted, unspecified summation always means summation from1 to∞.

Corollary 2.7. This applies, in particular, to a potential

V =
∑

βiVi βi ∈ R β := (βi) ∈ l∞(R) Vi as above. (15)

Remark 2.8. (a) If theVi are real multiplication operators on someL2(Rm) the above sum
can be shown to converge even in the strong sense. The underlying abstract reason for
this stronger property lies in the fact that now all theVi do automatically commute which
allows for certain technical manipulations of sums which do not seem to be possible in
the more general case (the proof can be found in [Sc]).

(b) Furthermore, in this concrete case there exists a more straightforward variant on the
above proof. The operator bound ofVi is theess sup|vi(x)|. By assumption at mostn0 vi
meet at a pointx. The operator norm of

∑
Vi is hence bounded byv · n0.

Warning. In the generic case the above convergence is not in operator norm. Assuming, for
example, that‖Vi‖ > ε > 0 for all i, the sequence of sums

∑n
1 Vi is evidently not a Cauchy

sequence in norm.

In the typical physical situation the occurring potentials are frequently not of (strictly)
finite range but decay at infinity with a certain rate. Thefinite intersection propertyintroduced
above emulates to some extent such afinite-range condition. It is therefore an interesting
question as to what extent an infinite range of the potentials under discussion can be admitted.
We make the following assumption.

Assumption 2.9 (Infinite range). We assume that each potentialVi can be decomposed as

Vi = V ai + V bi (16)
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with V ai fulfilling the finite intersection property. We assume further that with the help of the
methods developed in this paper

H ′ = H0 +
∑

V ai (17)

can be given a rigorous meaning as a self-adjoint operator. We want to impose a condition on
V b
i so that ∥∥∥∥∑V bi

∥∥∥∥ <∞ (18)

i.e. so that

H = H0 +
∑

V ai +
∑

V bi (19)

is a well defined self-adjoint operator where
∑
V bi is a bounded perturbation ofH ′. On

the other hand,V b
i need not fulfil the finite intersection property. We assume thatVi are

multiplication operators inL2(Rm) with V bi centred around pointsRi and decaying in the
following way:

|V bi (x)| 6 constant/(1 + |Ri − x|)k (20)

for somek > 0 and with theRi distributed inRm according to

|Ri − Rj | > 2A > 0 (21)

if i 6= j .

Our strategy is to show that under these conditions∑
|V bi (x)| 6

∑
constant/(1 + |Ri − x|)k 6 B <∞ (22)

for all k > k0. To this end we prove the following simple lemma.

Lemma 2.10.With x ∈ Rm andKR(x) a ball of radiusR centred atx there are at most
(R +A)m/Am pointsRi in KR(x) if |Ri − Rj | > 2A. Correspondingly, one can estimate the
number of points in a spherical shellK[R,R+d) aroundx of radii R,R + d with R > A. We
have

#(Ri) 6 [(R + d +A)m − (R − A)m]/Am. (23)

Proof. Let {Ri} be the set of points lying inKR(x). Draw a sphere of radiusA around each
Ri . The corresponding balls do not intersect and we can hence estimate

#(Ri) · cm · Am 6 cm · (R +A)m (24)

wherecm is the volume of the unit sphere inRm. From this we can conclude

#(Ri) 6 (R +A)m/Am. (25)

In the same way we prove the second statement. �

We can now proceed as follows:∑
|V bi (x)| =

∑
Ri∈Kl
|V bi (x)| +

∑
n>l

∑
Ri∈K[n,n+1)

|V bi (x)| (26)
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wheren, l ∈ N with l arbitrary but fixed so thatl > A. The right-hand side can be estimated
so that∑
|V bi (x)| 6 C0 +

∑
n>l
(constant/(1 +n)k) [(n + 1 +A)m − (n− A)m]/Am

6 C ′0 +C1

∑
n

n(m−1−k) (27)

whereC0, C
′
0 andC1 are constants independent of the pointx (note that the leadingnm-powers

vanish. Furthermore, we have absorbed sums over terms with a smaller power thanm− 1− k
in the constants). This sequence is convergent fork > m, hence:

Observation 2.11.For potentials fulfilling the criteria of assumption 2.9 the sum over infinite
range potentials,

∑
V bi , yields a bounded operator if

|V bi (x)| 6 constant/(1 + |Ri − x|)k k > m (28)

wherem is the space dimension.

3. The Stummel class

It is tempting to try to proceed in the same abstract way as developed in section 2 by simply
admitting more general classes of potentials or operatorsVi . Our original idea was to employ
the famous criterion ofKato smallnessin its abstract form in order to arrive at self-adjoint
perturbations of a given self-adjoint start Hamiltonian (see, for example, [Ka, ReSi2]).

Definition 3.1. LetH0, V be operators onH. V is calledH0-bounded with relative bounda
if

(a) D(V ) ⊃ D(H0)

(b) ‖Vψ‖ 6 a′‖H0ψ‖ + b‖ψ‖
with a′, b non-negative anda understood as the infimum of sucha′.

Remark. A corresponding condition can be formulated in theweak(i.e. form) sense.

Theorem 3.2.WithH0, V as aboveH = H0+V is a closed or self-adjoint operator onD(H0)

if H0 is closed or self-adjoint andV is symmetric in the latter case provided thata < 1.

It would now be natural to assume theVi to beKato-smallin the above sense and then try
to show the same for

∑∞
i=1Vi . However, to our surprise, irrespective of the direction of attack

an approach along these abstract lines has not yet been successful due to technical intricacies
in the manipulation and interchange of (infinite) sums and norm estimates. As a consequence
we choose, for the time being, a more concrete approach in this section and consider a certain
(in fact large) class of admissible potentials on someL2(Rm).
Definition 3.3 (Stummel class).With v a measurable function onRm with respect to the
standard Lebesgue measure we define for eachρ ∈ R

Mv,ρ(x) =


(∫
|x−y|61

|v(y)|2|x − y|ρ−m dmy

)1/2

ρ < m(∫
|x−y|61

|v(y)|2 dmy

)1/2

ρ > m.

(29)

The corresponding Stummel class is given by

Mρ(Rm) := {v : Rm→ C : sup
x∈Rm

Mv,ρ(x) := Mv,ρ <∞
}
. (30)
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This class was introduced by Stummel in [St]. A textbook treatment can be found in, for
example, [We]. Its properties have also been exploited in various papers by Simon (see, for
example, [Si]).

Lemma 3.4 (without proof). Mρ(Rm) is a vector space andMρ1 ⊂ Mρ2 for ρ1 6 ρ2.

Example 3.5.

L2(Rm) +L∞(Rm) ⊂ Mρ(Rm) L2
loc(R

m) ⊂ Mρ(Rm) (31)

for ρ > m.

As to the reason for the choice of this particular class we would like to make some
comments. Typically, mathematical physicists are accustomed to atomic potentials which
consist of asingular part, having a few singularities of a certain degree away from infinity
and perhaps a certain decaying tail extending to infinity. The left-hand side of example 3.5
is a typical case in point. These are the classes for which a lot of estimates can be found in
the literature (see, for example, [ReSi2]) and which lead to a whole bunch of self-adjointness
criteria. The potentials we want to discuss, however, are of a more intricate type. In our
scenario the singularities extend generically to infinity as the particle is assumed to move in an
infinitely extended (disordered) medium. As far as we can see, most of the standard estimates
do apply only to the above-mentioned simpler class of atomic potentials (at least without
modifications). On the other hand, as can be seen from definition 3.1, the Stummel condition
is essentially a local estimate, that is, it is relatively insensitive to the number of singularities
and their position in space. Therefore, it seems to be more suitable for our purposes at the
moment.

We remarked already in section 2 that there exist variants on thefinite intersection property
given in definition 2.2 which may turn out to be more suitable in specific contexts. This is the
case for the Stummel class.

Definition 3.6 (Variant on the finite intersection property). Given x ∈ Rm and a ball
aroundx with radius one, there are only uniformly finitely many potentialsVi (with respect to
eachx) which meet this ball. The bound being denoted byn1.

Remark. For well behaved sets�i or supports ofVi all these conditions are essentially
equivalent. On the other hand, there may be extreme situations where the one or the other
turns out to be better adapted.

Theorem 3.7.With vi(x) in Mρ(Rm) for all i so thatMvi,ρ < ∞ uniformly in i and {vi}
fulfilling the intersection property in the sense of definition 3.6

∞∑
1

βivi ∈ Mρ(Rm) (32)

holds forβ ∈ lp(C), 16 p 6∞.

Proof. By assumption there exists a uniformly finite index set,Jx , for eachx so that

supp

( ∞∑
i=1

βivi

)
∩ {y ∈ Rm : |x − y| 6 1}

= supp

(∑
i∈Jx

βivi

)
∩ {y ∈ Rm : |x − y| 6 1}. (33)
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Forρ < m we have∫
|x−y|61

∣∣∣∣ ∞∑
i=1

βivi(y)

∣∣∣∣2 |x − y|ρ−m dmy

=
∫
|x−y|61

∣∣∣∣∑
i∈Jx

βivi(y)

∣∣∣∣2 |x − y|ρ−m dmy

=
∫
|x−y|61

∣∣∣∣∑
i∈Jx

βivi(y)|x − y|(ρ−m)/2
∣∣∣∣2 dmy

6
(∑
i∈Jx

(∫
|x−y|61

∣∣βivi(y)|x − y|(ρ−m)/2∣∣2 dmy

)1/2)2

(34)

where in the last inequality the Minkowski or triangle inequality forL2 has been exploited. In
a second step we obtain(∑
i∈Jx

(∫
|x−y|61

∣∣βivi(y)|x − y|(ρ−m)/2∣∣2 dmy

)1/2)2

6 (sup
i∈Jx
|βi |)2 n2

1

(
max
i∈Jx

Mvi,ρ

)2
6 ‖β‖2p n2

1

(
max
i∈Jx

Mvi,ρ

)2
<∞ (35)

uniformly in x as supi∈Jx |βi | 6 ‖β‖∞ 6 ‖β‖p. Analogously, one shows forρ > m:∫
|x−y|61

∣∣∣∣ ∞∑
i=1

βivi(y)

∣∣∣∣2 dmy =
∫
|x−y|61

∣∣∣∣∑
i∈Jx

βivi(y)

∣∣∣∣2 dmy

6 ‖β‖2p n2
1

(
max
i∈Jx

Mvi,ρ

)2
<∞ (36)

uniformly in x, which proves the statement. �

In the following we chooseH0 = −1. The Laplace operator is self-adjoint on the Sobolev
spaceW2(Rm) (see, e.g., [ReSi2]). Furthermore, it can be inferred from slightly more general
results provided in [We] that potentials from the Stummel class withρ < 4 are defined on
W2(Rm) and arerelatively boundedwith respect to−1 with relative boundzero.

Theorem 3.8.Let ‖ · ‖, ‖ · ‖2 be the (L2) Hilbert space and Sobolev norm, respectively. For
ρ < 4 there exists a constantC > 0 so that

‖vψ‖ 6 CMv,ρ‖ψ‖2 ∀ v ∈ Mρ(Rm) ψ ∈ W2(Rm). (37)

Furthermore, for allη > 0 there exists aCη so that

‖vψ‖ 6 η‖ψ‖2 +Cη‖ψ‖ ∀ψ ∈ W2(Rm). (38)

As the above Sobolev norm is equivalent to the graph norm of the Laplacian it follows thatV

is−1-bounded with relative bound zero.
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Consequences 3.9.Under the above assumptionsH(β) = −1 +
∑∞

i=1 βiVi is a closed,
respectively, self-adjoint operator onW2(Rm).

A slight extension then yields

Theorem 3.10.Under the above assumptionsH(β) = −1 + U +
∑∞

i=1 βiVi is a closed or
self-adjoint operator onW2(Rm) if U is−1-bounded with relative bound zero. In the latter
caseU andVi have to be symmetric andβi have to be real.

So far the results on closedness or self-adjointness of Hamilton operators and the
corresponding classes of admissible potentials. In the next two sections we are going to
establish a theory ofanalytic perturbation of spectra and operatorstaking place ininfinitely
many variablesat a time or variables varying in a general Banach space upon this groundwork.

4. Complex analysis in Banach spaces

In the second part of this paper we want to discuss analyticity properties of eigenvalues of
Hamilton operatorsH(β) = H0 +

∑∞
i=1 βiVi with H0 some unperturbed Hamiltonian and

β1, β2, . . . ∈ C. To do so one needs the notion of infinite-dimensional holomorphy.
Instead of dealing with infinitely many coupling parameters we will frequently regard

β = (β1, β2, . . .) as an element of a Banach space, such as, for example,l∞ and hence
investigate perturbations in one Banach space-valued coupling parameter. While complex
analysis in one complex variable belongs to the standard repertoire of the ordinary perturbation
theory of operators we have to generalize it in the way described above to complex analysis in
Banach spaces.

As this is perhaps not so widely known we summarize definitions and theorems which
will be important in this enterprise. Many of the results can already be found in [HiPh]. As to
more recent representations see, for example, [Mu] or [Ze].

In what followsX andY are infinite-dimensional complex Banach spaces andU ⊂ X is
an open set. One of the difficulties of complex analysis in Banach spaces is a suitable definition
of power series and differentiability.

Definition 4.1. A formal power series fromX toY at a ∈ X is a series of symmetric,m-linear
mappingsAm : Xm→ Y of the form

∞∑
m=0

Am(x − a)m (39)

withAm(x − a)m := Am(x − a, . . . , x − a︸ ︷︷ ︸
m-times

).

The radius of convergence of the power series
∑∞

m=0Am(x − a)m is the supremum of
all r > 0 so that the series converges uniformly in the closed ballB̄(a, r). In analogy to the
formula of Cauchy–Hadamard the radius of convergenceR is given by

1

R
= lim sup

m→∞
‖Am‖1/m (40)

with ‖Am‖ := sup‖x1‖=···=‖xm‖=1 ‖Am(x1, . . . , xm)‖ and 1/0 := ∞ as well as 1/∞ := 0. The
series converges absolutely and uniformly inB̄(a, r) if 0 6 r < R.

With this notion of power series it is possible to introduce analytic mappings in Banach
spaces.
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Definition 4.2. A mapf : U → Y is called analytic if for eacha ∈ U there exists a ball
B(a, r) ⊂ U and a sequence of symmetric,m-linear, continuous mappingsAm : Xm → Y so
that

f (x) =
∞∑
m=0

Am(x − a)m (41)

for all x ∈ B(a, r).
The sequence of mappingsAm is uniquely determined byf anda. We will frequently

suppress the explicit dependence onf or a and set

Amf (a) := Am. (42)

f (x) =
∞∑
m=0

Amf (a)(x − a)m (43)

is calledTaylor seriesof f ata.
Many important theorems in complex analysis in Banach spaces can be shown to hold by

reducing the problems to well known results of complex analysis in one or several complex
variables.

Definition 4.3. A mapf : U → Y is called G-analytic if the mappingλ 7→ f (a + λb) is
analytic for all a ∈ U andb ∈ X on the open set{λ ∈ C : a + λb ∈ U}. It is called weakly
analytic ifg ◦ f is analytic for allg ∈ Y ′, the dual space ofY .

The following generalized Cauchy integral formula is useful.

Theorem 4.4.Letf : U → Y be analytic,a ∈ U , t ∈ X andr > 0 so thata + ζ t ∈ U for all
ζ ∈ U(0, r) ⊂ C. Then for allλ ∈ U(0, r) ⊂ C the Cauchy integral formula

f (a + λt) = 1

2π i

∫
|ζ |=r

f (a + ζ t)

ζ − λ dζ (44)

holds. Further,

d

dλ
f (a + λt) = 1

2π i

∫
|ζ |=r

f (a + ζ t)

(ζ − λ)2 dζ (45)

is valid.

The integration paths are always positively oriented. An analogous formula exists for
higher derivatives.

With the help of the generalized Cauchy integral formula the following relations between
the different notions of differentiability can be shown:

Theorem 4.5.

f is analytic ⇔ f is continuous andG-analytic

⇔ f is locally bounded andG-analytic

⇔ f is weakly analytic.

After discussing the notion of analytic or holomorphic functions in the sense of power
series, i.e. the point of view adopted by Weierstrass, we now turn to the notion of complex
differentiability, i.e. the Riemannian point of view.
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Definition 4.6. A mapf : U → Y is called differentiable (Fŕechet-differentiable, complex
differentiable or differentiable in norm) if for alla ∈ U there exists a mappingA ∈ L(X, Y )
so that

lim
h→0

‖f (a + h)− f (a)− A(h)‖
‖h‖ = 0. (46)

Alternatively, a mapf : U → Y is called differentiable if for alla ∈ U a mapping
A ∈ L(X, Y ) exists so that

f (a + h)− f (a) = A(h) + o(‖h‖) (47)

for all h in a neighbourhood of zero. Herer(h) = o(‖h‖) is an abbreviation for a mapping
r : U(0) ⊆ X→ Y with r(h)/‖h‖ → 0 if h→ 0.

As a side remark we want to mention some further results.

(a) Every differentiable mapf : U → Y is continuous.
(b) The mappingg 7→ g−1 is differentiable for every invertible mapg ∈ L(Y ). We will use

this in connection with resolvents in section 5.
(c) The mappingA ∈ L(X, Y ) of definition 4.6 is uniquely determined byf anda. It is

calledderivativeof f in a and is often written in the form

Df (a) := A. (48)

Every differentiable mapf : U → Y induces a mappingDf : U → L(X, Y ). As in
finite-dimensional Banach spaces the sum rule, product rule and chain rule are valid. In the
proofs of section 5, where we generalize perturbation theory to coupling parameters in Banach
spaces, we often use the equivalence between analyticity and complex differentiability.

Analogous to complex analysis in one complex variable it is shown that analyticity also
implies that the map is infinitely often complex differentiable. Here higher derivatives are
defined recursively, i.e.f : U → Y isk-times differentiableif f is a(k−1)-times differentiable
mapping and if the(k − 1)st derivativeDk−1f : U → L(Xk−1, Y ) is differentiable. A map
is calledinfinitely often differentiableif it is k-times differentiable for eachk ∈ N (we set
D0f = f ).

One can show that everym-linear mappingDmf (a) ∈ L(Xm, Y ) is symmetric for all
a ∈ U . With this it is possible to prove the following important theorem.

Theorem 4.7.For a mapf : U → Y the following statements are equivalent:

(a) f is analytic.
(b) f is complex differentiable.
(c) f is infinitely many times complex differentiable.

If one of these conditions is fulfilled,

Dmf (a) = m! Amf (a) (49)

holds.

With this we obtain the Taylor series off in a

f (x) =
∞∑
m=0

1

m!
Dmf (a)(x − a)m (50)

for all x ∈ B(a, r) ⊂ U with a certainr > 0.
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In section 5 we will use the notion of a differentiable map, which depends on a variable
in a Cartesian product of Banach spaces. We want to show that the resolvent of the Hamilton
operatorH(β),(

H(β)− λ)−1
(51)

is jointly differentiable in(β, λ) with λ being an element of the resolvent set.
The Cartesian productX× Y of two Banach spacesX andY becomes a Banach space by

componentwise addition and scalar multiplication and with the norm‖(x, y)‖ := ‖x‖ + ‖y‖
for (x, y) ∈ X × Y . LetU ⊂ X × Y be open andZ another complex Banach space. Then
f : U → Z is called differentiable in analogy to definition 4.6 if for all(a, b) ∈ U there exists
a mappingA ∈ L(X × Y,Z) so that

lim
(h,k)→(0,0)

‖f (a + h, b + k)− f (a, b)− A(h, k)‖
‖(h, k)‖ = 0 (52)

or equivalently

f (a + h, b + k) = f (a, b) +A(h, k) + o(‖(h, k)‖) (53)

holds. The mappingA is called derivative off in (a, b) ∈ U and is written asDf (a, b) := A.
To prove the differentiability of a mapping in, for example, two variables, one can introduce

partial derivatives as in finite-dimensional spaces.

Theorem 4.8.A map f : U ⊂ X × Y → Z is differentiable iff1(x) := f (x, y)

and f2(y) := f (x, y) are differentiable and if the derivativesD1f (a, b) := Df1(a) and
D2f (a, b) := Df2(b) are continuous in(a, b). Then for each(a, b) ∈ U

Df (a, b)(h, k) = D1f (a, b)h +D2f (a, b)k (54)

holds for all(h, k) ∈ X × Y .

5. Analytic perturbation theory in coupling parameters in Banach spaces

As the model Hamiltonian of section 1 suggests, we have to focus our attention on the
perturbation theory of operators in infinite many complex coupling parameters. In the following
we consider theβi ’s as an element of a sequence spacelp(C), 1 6 p 6 ∞. Of particular
interest is the spacel∞, i.e. the sequences which are uniformly bounded.

As we have already remarked in section 4, we treat the sequence-space-valued coupling
parameters in a more abstract way by regarding them as coupling parameters in a general
complex Banach space.

In the first subsection we define analytic families and prove a generalization of a theorem
of Kato and Rellich about the behaviour of isolated, non-degenerate eigenvalues and their
eigenfunctions.

The second subsection deals with other notions of analytic families. We investigate in
particular analytic families of type (A) and explore their relation to analytic families of the
first subsection.

In the third subsection we show that relatively bounded perturbations are analytic families
in our generalized sense. This then enables us to apply the machinery developed above to the
model Hamiltonian of section 1.
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5.1. Generalization of a theorem of Kato and Rellich

One of the goals of analytic perturbation theory is the representation of eigenvalues and
eigenfunctions as power series in the complex coupling parameter. Therefore, the functions
under discussion have to be analytic in the coupling parameter. One hopes that the eigenvalues
and eigenfunctions are analytic if the corresponding Hamilton operator depends analytically
on the coupling parameter in a certain way.

As we have explained in section 4 it is natural to investigate analytic mappings between a
Banach space of coupling constants and a Banach space of operators, for example the bounded
operators.

For unbounded (Hamilton) operators the situation is slightly different as the set of
unbounded operators is not automatically a Banach space. It is, however, possible to metrize the
set of closed operators and to define analytic families via a generalized convergence [Ka, p 197].
In this paper we use an equivalent definition according to [ReSi4, p 14]. In this approach
analyticity of the corresponding resolvents is demanded, such that the problem is reduced to
the case of bounded operators.

In the following ‘β nearβ0’ always means thatβ is an element of a suitable neighbourhood
of β0. If not stated otherwise, the operatorsT (β) are defined on a Banach spaceY . X is always
assumed to be a complex Banach space andU ⊂ X to be open and connected.

Definition 5.1. An operator-valued mappingT (·) on U is called an analytic family or an
analytic family in the sense of Kato if and only if

(a) For eachβ ∈ U , the operatorT (β) is closed and has a non-empty resolvent set, i.e.
ρ(T (β)) 6= ∅.

(b) For everyβ0 ∈ U a λ0 ∈ ρ(T (β0)) exists so thatλ0 ∈ ρ(T (β)) if β is nearβ0 and
so that the resolvent(T (β) − λ0)

−1 is an analytic operator-valued mapping ofβ in a
neighbourhood ofβ0.

The following investigations show that this definition is convenient and allows us to
derive results about the behaviour of eigenvalues and eigenfunctions, such as, for example, the
generalized theorem of Kato and Rellich.

For this we need the analyticity of the resolvent in both variables(β, λ).

Lemma 5.2. If T (·) is an analytic family onU,

0 := {(β, λ) : β ∈ U, λ ∈ ρ(T (β))} (55)

is open inX × C. The resolvent(T (β)− λ)−1, which is defined on0, is analytic in(β, λ).

The proof, which is inspired by [ReSi4, p 14], can be found in [Sc]. It exploits the
equivalence between analyticity and complex differentiability. The resolvent is analytic in
(β, λ) ∈ 0 if it is differentiable in each variable and if the partial derivatives are continuous in
(β, λ) (theorem 4.8). In particular, we use the differentiability of the mappingg 7→ g−1.

With the help of this it is possible to generalize the theorem of Kato and Rellich of
perturbation theory in one complex parameter [ReSi4, p 15] to coupling parameters in a
complex Banach space.

Theorem 5.3.Let T (·) be an analytic family inβ ∈ U . Suppose thatE0 is an isolated,
non-degenerate eigenvalue ofT (β0), then the following is valid:

(a) For β nearβ0, there is exactly one isolated, non-degenerate pointE(β) in σ(T (β)) near
E0. E(β) is an analytic map ofβ for β nearβ0.

(b) There is an analytic eigenvectorψ(β) of T (β) for β nearβ0.
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Proof. If E0 is a discrete eigenvalue ofT (β0), one can findr > 0 so that{λ ∈ C : |λ−E0| 6
r} ∩ σ(T (β0)) = {E0}. The circle{λ ∈ C : |λ − E0| = r} is compact inC and a subset of
ρ(T (β0)). According to lemma 5.2 the set0 = {(β, λ) : β ∈ U ⊂ X, λ ∈ ρ(T (β))} is open
in X × C. Therefore,δ > 0 exists so thatλ ∈ ρ(T (β)) if |λ − E0| = r and‖β − β0‖ 6 δ.
Then the resolvent(T (β) − λ)−1 is analytic in(β, λ). LetW := {β ∈ X : ‖β − β0‖ 6 δ}.
Then

P(β) = −(2πi)−1
∫
|λ−E0|=r

(
T (β)− λ)−1

dλ (56)

exists for allβ ∈ W and is analytic inβ if β ∈ W ⊂ X.
Since the eigenvalueE0 of T (β0) is non-degenerate, the corresponding projector is one

dimensional. Using a lemma in [ReSi4, p 14] we know that all projectorsP(β) are one
dimensional ifβ ∈ W . According to theorem XII.6 in [ReSi4, p 13], which is also valid for
operators in Banach spaces, there is exactly one non-degenerate eigenvalueE(β) of T (β)with
|E(β)− E0| < r if β ∈ W .

Letψ0 be the corresponding eigenvector ofE0. ThenP(β)ψ0 6= 0 if β is nearβ0 because
P(β)ψ0→ ψ0 for β → β0. AsP(β)ψ0 is an eigenvector of the operatorT (β) in Y, we have
for all ϕ ∈ Y ′, the dual space ofY,

ϕ(P (β)ψ0) = ϕ
((
T (β)− E0 − r

)−1(
T (β)− E0 − r

)
P(β)ψ0

)
= (E(β)− E0 − r)ϕ

((
T (β)− E0 − r

)−1
P(β)ψ0

)
. (57)

Hence

(E(β)− E0 − r)−1 = ϕ
((
T (β)− E0 − r

)−1
P(β)ψ0

)
ϕ
(
P(β)ψ0

) (58)

and(E(β)− E0 − r)−1 is analytic ifβ ∈ W .
Defineψ(β) := P(β)ψ0, thenψ(β) is an analytic eigenvector ofT (β) if β ∈ W . �

5.2. Analytic families of type (A)

As the last theorem shows the notion of analytic families in the sense of Kato is also convenient
for coupling parameters in general Banach spaces. As it is frequently difficult to verify directly
that a given family of operators is ananalytic family, other notions of analytic families are
introduced.

In this paper we define analytic families of type (A) for operators depending on a parameter
varying in a Banach space. It is then possible to show that analytic families of this type are
analytic families in the more general sense of Kato. This is useful because it is usually easier
to prove that a family of operators is analytic of type (A).

Definition 5.4. For eachβ ∈ U , let T (β) : D(T (β)) ⊂ Y → Y be a closed operator with
non-empty resolvent set.T (·) is called an analytic family of type (A) if and only if

(a) The domainD := D(T (β)) does not depend onβ ∈ U .
(b) T (β)ψ is an analytic map inβ ∈ U for all ψ ∈ D.

In order to infer the more general property from this we prove the analyticity of the
resolvent with the help of the ‘strong’ analyticity of the operators. In a first step we construct
bounded operators from the closed operators and use the following lemma.
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Lemma 5.5. Let X, Y and Z be complex Banach spaces and letU ⊂ X be open. If
T̃ (β) ∈ L(Z, Y ) and if T̃ (β)ψ is analytic inβ ∈ U for all ψ ∈ Z, thenT̃ (β) is analytic in
β ∈ U .

Proof. Let β ∈ U , t ∈ X andM = {ζ ∈ C : β + ζ t ∈ U}. Let0 ⊂ M be a mathematically
positive oriented circle inζ . The Cauchy integral formula (theorem 4.4) yields

1

h
(T̃ (β + (ζ + h)t)ψ − T̃ (β + ζ t)ψ)− d

dζ
T̃ (β + ζ t)ψ

= 1

2π i

∫
0

(
1

h

(
1

ζ ′ − (ζ + h)
− 1

ζ ′ − ζ
)
− 1

(ζ ′ − ζ )2
)
T̃ (β + ζ ′t)ψ dζ ′

= 1

2π i

∫
0

h

(ζ ′ − (ζ + h))(ζ ′ − ζ )2 T̃ (β + ζ ′t)ψ dζ ′. (59)

As all analytic functions areG-analytic,T̃ (β)ψ isG-analytic (theorem 4.5). HencẽT (β+ζ ′t)ψ
is continuous inζ ′ ∈ M. Since0 is compact, for eachψ ∈ Z a numberCψ exists so that

‖T̃ (β + ζ ′t)ψ‖ 6 Cψ (60)

for all ζ ′ ∈ 0. According to the uniform boundedness theorem aC ∈ R exists so that

sup
ζ ′∈0
‖T̃ (β + ζ ′t)‖ 6 C. (61)

Therefore, one obtains∥∥∥∥1

h
(T̃ (β + (ζ + h)t)ψ − T̃ (β + ζ t)ψ)− d

dζ
T̃ (β + ζ t)ψ

∥∥∥∥
6 1

2π
C‖ψ‖

∫
0

∣∣∣∣ h

(ζ ′ − (ζ + h))(ζ ′ − ζ )2
∣∣∣∣ dζ ′ (62)

hence the estimate∥∥∥∥1

h
(T̃ (β + (ζ + h)t)− T̃ (β + ζ t))− d

dζ
T̃ (β + ζ t)

∥∥∥∥
6 1

2π
C

∫
0

∣∣∣∣ h

(ζ ′ − (ζ + h))(ζ ′ − ζ )2
∣∣∣∣ dζ ′ (63)

holds. The integral vanishes in the limith → 0. Therefore,T̃ (β) is G-analytic inβ ∈ U .
T̃ (β) is analytic if, in addition,T̃ (β) is locally bounded (theorem 4.5). The local boundedness
follows from the uniform boundedness principle by means of the continuity of the mapping
T̃ (β)ψ . For eachψ ∈ Z and every compact set0 ⊂ U a cψ exists so that‖T̃ (β)ψ‖ 6 cψ is
valid for all β ∈ 0. Hencec ∈ R exists with supβ∈0 ‖T̃ (β)‖ 6 c. �

This yields the following important theorem (cf [Ka, p 375]).

Theorem 5.6.Every analytic family of type (A) is an analytic family in the sense of Kato.

Proof. Let β0 ∈ U ⊂ X. LetT (β) : D ⊂ Y → Y be an analytic family of type (A) inβ ∈ U .
HenceT (β0) is a closed operator withρ(T (β0)) 6= ∅. By introduction of the graph norm

|||ψ ||| = ‖ψ‖ + ‖T (β0)ψ‖ (64)



Perturbation theory of Schrödinger operators 7539

the domainD of this operator is converted into a Banach space

D̃ := (D, ||| · |||). (65)

Let ι be the embedding operator from̃D in Y . ι is bounded because‖ιψ‖ = ‖ψ‖ 6 |||ψ |||
holds.

We now consider the operatorT (β) from D̃ to Y and call this operator̃T (β),

T̃ (β) : D̃→ Y, (66)

ψ 7→ T̃ (β)ψ = T (β) ι ψ. (67)

T̃ (β) is a closed operator becauseT (β) is closed andι is continuous. T̃ (β) is defined
on the wholeD̃. Therefore,T̃ (β) is bounded according to the closed graph theorem, i.e.
T̃ (β) ∈ L(D̃, Y ).

T̃ (β)ψ = T (β) ι ψ = T (β)ψ is analytic inβ ∈ U for all ψ ∈ D̃. Therefore,T̃ (β) is
analytic inβ ∈ U (lemma 5.5).

Let λ0 ∈ ρ(T (β0)). It has to be shown thatλ0 is an element ofρ(T (β)) and that
(T (β) − λ0)

−1 is an analytic map inβ for β nearβ0. The mapT (β0) − λ0 : D → Y

is bijective becauseλ0 ∈ ρ(T (β0)). The same holds forι : D̃ → D. Therefore,
(T (β0)− λ0)ι = T̃ (β0)− λ0 ι is invertible and(

T̃ (β0)− λ0 ι
)−1 ∈ L(Y, D̃). (68)

As the set of invertible, continuous and linear operators onY is open (see, e.g., [Ta, p 9]),(
T̃ (β)− λ0 ι

)−1 ∈ L(Y, D̃) (69)

and(T̃ (β)− λ0 ι)
−1 is analytic inβ for β nearβ0. Therefore,

(T (β)− λ0)
−1 = ι(T̃ (β)− λ0 ι)

−1 (70)

is bounded and analytic inβ (note that we modified the standard textbook proof which does
not seem to be directly applicable to our more general situation). �

The inversion of this theorem is not valid as already has been shown by a counterexample for
complex coupling parameters [Ka, p 376] or [ReSi4, p 20]. An analytic family in the sense of
Kato can have a domain which depends onβ.

5.3. Perturbation theory of Hamilton operators in infinitely many complex coupling
parameters

In quantum mechanics the (Hamilton) operators are typically of the form

H(β) = H0 + V (β). (71)

Theorem 5.7.LetX andY be complex Banach spaces; letU ⊂ X be open and connected.
Suppose thatH0 is a closed operator onD(H0) ⊂ Y and that for eachβ ∈ U , V (β) is
relativelyH0-bounded withH0-bound smaller than one. Furthermore, letV (β)ψ be analytic
in β ∈ U for all ψ ∈ D(H0) and let the resolvent setρ(H(β)) of

H(β) = H0 + V (β) β ∈ U (72)

be non-empty. ThenH(·) is an analytic family.
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Proof. It is sufficient to prove thatH(·) is an analytic family of type (A) (theorem 5.6).
According to a well known stability theorem [Ka, p 190],H(β) is a closed operator for all
β ∈ U . The domainD(H(β)) = D(H0) does not depend onβ. BecauseV (β)ψ is an analytic
map,H(β)ψ is also analytic inβ ∈ U for all ψ ∈ D(H0). Therefore, all conditions of an
analytic family of type (A) are fulfilled. �

Remark 5.8. LetH0 be a self-adjoint operator onD(H0) ⊂ H and letV be relativelyH0-
bounded withH0-bound zero. Then the resolvent setρ(H0 + V ) is not empty.

Proof. By definition we have

‖Vψ‖ 6 a‖ψ‖ + b‖H0ψ‖ ∀ψ ∈ D(H0). (73)

As theH0-bound ofV is zero,b can be chosen arbitrarily small. The spectrum of the self-
adjoint operatorH0 is real. Therefore,λ ∈ ρ(H0) with a sufficiently large imaginary part
exists so that

a sup
E∈σ(H0)

|E − λ|−1 + b sup
E∈σ(H0)

|E||E − λ|−1 < 1 (74)

holds. According to [Ka, pp 214, 272]λ is an element ofρ(H0 + V ). �
In the first part of the paper we investigated Hamilton operators of the form

H(β) = H0 +
∞∑
i=1

βiVi. (75)

V (β)ψ = ∑∞i=1 βiViψ is analytic inβ = (β1, β2, . . .) ∈ l∞(C) for all ψ ∈ D(H0) because∑∞
i=1 βiVi is continuous and linear inβ for all ψ ∈ D(H0). Bounded operators are relatively

H0-bounded withH0-bound zero. Therefore, we obtain the following corollary.

Corollary 5.9. SupposeH0 to be a self-adjoint operator withD(H0) ⊂ L2(Rm). LetVi be
symmetric, bounded operators inL2(Rm) with ‖Vi‖ 6 v for all i ∈ N, which fulfil the finite
intersection property. Letβ ∈ l∞(C). Then

H(β) = H0 +
∞∑
i=1

βiVi (76)

is an analytic family.

For Hamilton operators with an infinite sum of Stummel-class potentials we obtain a
corresponding result.

Corollary 5.10. Let ρ < 4 and β ∈ lp(C), 1 6 p 6 ∞. Let {Vi}i∈N be multiplication
operators inL2(Rm) so that the finite intersection property is fulfilled and so thatvi ∈ Mρ(Rm)
with supi∈NMvi,ρ <∞. Then

H(β) = −1 +
∞∑
i=1

βiVi (77)

is an analytic family. If in additionU is a symmetric,−1-bounded operator with−1-bound
zero, the Hamilton operatorsH(β) = −1 +U +

∑∞
i=1 βiVi are an analytic family.

Proof. Since−1 is a self-adjoint operator onW2(Rm), −1 + U is self-adjoint onW2(Rm).
In section 3 we proved thatV (β) :=∑∞i=1 βiVi is an element of the Stummel-classMρ(Rm).
Therefore,V (β) is relatively bounded with respect to−1 +U with (−1 +U)-bound zero.�
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